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Algorithms for Computing the h-Range 
of the Postage Stamp Problem 

By Svein Mossige 

Abstract. New algorithms, based on a very efficient method to compute the h-range, have 
been used to extend known tables of the extremal h-range, to complete the solution in the 
case k = 3, and to find a lower bound for the extremal 2-range. 

1. Introduction. The postage stamp problem consists of choosing, for given h and 
k, a set of k positive integers such that 

(a) sums of h (or fewer) of these integers can realize the numbers 1, 2, .. ,; 

(b) the value of n in (a) is as large as possible. 
Let h and k be given positive integers and Ak = {a,, a2, . . ., akj a set of distinct 

integers such that 1 = al < a2 < . . . < ak. We form the set of linear combina- 
tions 

k k A 

S= x E ai; xi > 0, Ex < h} 

The number n is called the h-range of the basis Ak if the set S contains the integers 
1, 2, . . . , n, that is [1, n] C S, and n + 1 4 S. The h-range of Ak is denoted by 

nh(Ak). 
For given h and k, an extremal basis is a basis of k elements for which n is as 

large as possible. The corresponding extremal h-range is denoted by nh(k). 
The set Ak is called an admissible basis if 

(1) ai < a,+I < nh(Ai) + 2, i = 1, 2, . . ., k - 1, that is, nh(Ak) > ak. 

In what follows, only such bases Ak will be considered. Let ho denote the smallest 
possible h such that Ak is an admissible basis. 

For all k and h > hog we trivially have 

(2) nh+l(Ak) > nh(Ak) + ak 

Further, Selmer [10] proved that, for arbitrary k and h > hog 

(3) nh(Ak) > (h + l)ak-I - ak 

implies 

(4) nh+1(Ak) = nh(Ak) + ak 

If h is increased by 1, the right-hand side of (3) increases with akl, while the 
left-hand side increases with at least ak. There is consequently an h, ( ho) such 
that (3) and hence (4) are satisfied for all h > h,. This means that for given h, 
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h > h , we have 

(5) nh(Ak) = nh,(Ak) + (h - hl)ak. 

2. Recursive Definition of the Set S. To simplify the notation, we introduce the 
artificial basis element ao = 0. For given h, k, and Ak, the set S = s(h, k) can then 
be defined recursively by 

s(l, k) = Ak U {0}, 

(6) ~~~~~~k 
(6) |[s(r, k) = U (ai + s(r - 1, k)), r = 2, 3, ... , h, 

i=O 

where, as usual, 
(7) ai + s(r- 1, k)= {a, + b; b E s(r- 1, k)). 

We further need the obvious relation 
h 

(8) s(h, k)= U (iak + s(h-i, k- 1)). 
i=o 

The argument k - 1 indicates that ak is removed from the basis. We define 
s(O, k) = s(h, 0) = {0}. 

From (6) and (7), we see that s(r, k) is a union of the set s(r - 1, k) and the sets 
given by adding ai (i > 1) to each element in s(r - 1, k). The following interpreta- 
tion of the process may be enlightening: 

Let bo = 0, bl, . .. , be, be all the elements in the set s(r - 1, k), and mark a ruler 
at distances bog bl, .. , bV from its starting point. Place this point at the origin of 
an axis and transfer to the axis the marks on the ruler. Then translate the ruler 
along the axis, first a, units and transfer the marks to the axis, then a2 units, etc., 
up to ak units and transfer each time the marks on the ruler to the axis. The 
numbers corresponding to the marks on the axis are then exactly the elements of 
the set s(r, k). 

(8) suggests a method to compute nh(Ak l U { ak)) based on the information 
achieved by the computation of nh(Ak -1). 

3. The h-Range (Basic Algorithm). In the computer, we represent the set 
s(r, k) \ {0}, 1 < r < h, as a bit string Br of length rak: 

Br: bit t = 1 iff t E s(r, k) \ {O}. 

In particular, B1 corresponds to the basis Ak. 

Let ai Br - denote the bit string Bri - shifted ai places to the right (filling in with 
zeros to the left). Then the recursive definition (6) is equivalent to the following set 
of OR operations: 

k 

(9) Br= V aiBr-,1 r=2,3,...,h. 
i=O 

Each time a new Br is constructed, we check if the ak left-most bits in Br are 1 
bits. When this is the case for the first time, we have nr(Ak) > ak and hence ho = r. 
For each r > hog nr(Ak) is determined by scanning the bit string Br. The first zero is 
then in position nr(Ak) + 1. 

If ho < h, we check for each r, ho < r < h, whether (3) is satisfied. If this occurs 
for the first time for r = hl, we use (5) to determine nh(Ak). For large h, this simple 
device yields a significant reduction of the computing time. 
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Another device, also very effective for large h, is to reduce the number of 
registers needed to hold the bit strings Br. For r > ho, we can delete the first nr(Ak) 

1 bits. From (2), it follows that no bit string length for r > ho will then exceed 
hOak - nho(Ak). 

When computing nh(k) by the method of Section 4, we may also save a 
substantial amount of time by chopping off the bit strings Br at the other end. 
Keeping k fixed, the extremal range nh(k) turns out to increase fairly regularly with 
h. We can therefore estimate a safe upper bound for nh(k) and delete those parts of 
the bit strings Br which exceed this bound. 

4. The Extremal h-Range nh(k), h > 2. For given h and k, let Uh be the universe 
of all admissible sets Ak, defined by the conditions (1). To find the set(s) with the 
extremal h-range, we scan the universe Uh. For each Ak E Uh, the h-range nh(Ak) is 
computed by the basic algorithm. 

An alternative approach (not used in our calculations) is to extract from the 
basic algorithm also the ranges nr(Ak) for r < h. This would allow for a simulta- 
neous computation of extremal ranges for all r < h, at the cost of larger storage 
requirements. 

If we know a lower bound L such that nh(k) > L, we can skip all Ak E Uh with 
hak < L. Having already calculated nh 1(k) and a corresponding extremal basis 

A*. we may start the scanning of Uh with L = nh -(k) + ak*. Whenever we find a 
larger nh(Ak), this can replace the previous bound L. To get large bounds as quickly 
as possible, we scan the intervals (1) for ai downwards. This also simplifies the 
exclusion of all Ak with hak < L. 

5. The Extremal 2-Range n2(k). For h = 2, the devices mentioned at the end of 
Section 3 are of no use. We may instead utilize (8), which now takes the form 

(10) s(2, k) = s(2, k - 1) u (ak + (Ak-1 U (0))) u {2ak). 

We scan U2 for k - 1, corresponding to s(2, k - 1). Each Akl - is then extended 
to Ak, where ak-l < ak < n2(Ak -1) + 2 by (1). In the computer representation of 
(10) as a bit string, we may clearly delete {ak} (since Ak is admissible). We may 
also delete {2ak}, if we note that a calculated 2-range 2ak - 1 then really corre- 
sponds to the maximal range 2ak. As a result, we get the extremal ranges n2(k - 1) 
and n2(k) simultaneously. 

Because of the simplicity of (10), this method leads to a surprisingly large saving 
in computing time. A simultaneous computation of n2(9) and n2(10) used only 25% 
of the time needed to determine these extremal ranges individually by the method 
of Section 4. 

Also for small h > 2, the above method may represent an interesting alternative 
to such individual computations. 

Riddell and Chan [7] have another algorithm for h = 2. Their method can be 
used for h > 2, but then their universe of sets is larger than necessary, including 
also nonadmissible sets. 

Lunnon's algorithm [4] utilizes (8) for all h. For fixed k, this requires the storing 
of all bit strings s(h-i, k-1), i = 0, 1, . . ., h. 
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6. The Extremal 2-Range for Symmetric Bases. A set Ak U {ao = 0) is symmetric 
if ai + ak-i = ak for i = 0, 1, .. ., k. The 2-range of a symmetric basis is 2ak; cf. 
[8]. 

To compute the extremal 2-range for symmetric bases, it is sufficient to scan all 
admissible sets Ak/2 for k even and all sets A(k+ 1)/2 for k odd. The computing time 
can be reduced by the methods described at the end of Section 4. The amount of 
work is comparable to that of computing n2(1(k + 1)/2]). 

7. Results of the Calculations. The algorithms were written in assembler language 
and Fortran and performed on the Univac computer at the University of Bergen. 

For k = 2, explicit formulas for the extremal bases and ranges are well known; 
cf. [11]. 

In 1968, Hofmeister [2] solved the corresponding problem for k = 3 almost 
completely, giving formulas which are valid for sufficiently large h. He also gave a 
table for h < 34 (where the "anticipated" extremal basis {1, 19, 102) for h = 22 is 
missing). Recently, Hofmeister [3] has shown that it suffices to check separately the 
cases with h < 200. Using results from Selmer's paper [101, we have performed this 
check. It turns out that for h > 22, Hofmeister's formulas for k = 3 cover all 
extremal bases. 

For k > 4, the standard table of reference is that of Lunnon [4]. In addition, 
Seldon [9] computed n3(10), Phillips [61 n4(8), and Riddell and Chan [71 n2(13). 

Our programs used only 4.5 hours to verify Lunnon's tables. This figure reflects 
the speed of Univac 1100/82, but even more the efficiency of our basic bit string 
algorithm. 

We have extended earlier tables in four directions: 
For k = 4, Table 1 below lists nh(4) and the corresponding extremal bases for 

2 < h < 28. 

TABLE 1 

Extremal h-ranges for k = 4 

h nh(4) a2 a3 a4 h nh(4) a2 a3 a4 

2 12 3 5 6 15 1383 12 65 240 
3 24 4 7 8 16 1650 11 78 216 
4 44 3 11 18 17 1935 11 90 252 
5 71 54 12 21 18 2304 16 73 338 

t 5 12 28 19 2782 10 99 360 
6 114 4 19 33 20 3324 16 103 488 
7 165 5 24 37 21 3812 16 103 488 
8 234 6 25 65 22 4368 12 121 561 
9 326 5 34 60 23 5130 14 142 659 
10 427 6 41 67 24 5892 16 163 757 
11 547 7 48 85 25 6745 20 149 860 
12 708 7 48 126 26 7880 16 194 734 
13 873 9 56 155 27 8913 21 177 1006 
14 1094 8 61 164 28 9919 21 177 1006 

Table 2 gives some extremal ranges for k = 5 and k = 6, with bases. 
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TABLE 2 
Some nh(k) for k > 4 

k h nh(k) a2 a3 a4 a4 a6 

(10 1055 8 27 119 194 
5 j 1 1475 10 34 165 270 

t 12 2047 10 26 195 320 

6 7 664 7 12 64 113 193 
{8 1045 9 14 65 170 297 

Table 3 shows the three extremal bases corresponding to n2(14) = 80. The first 
one of these bases inspired the appendix below.* 

TABLE 3 
Extremal bases for n2( 14) = 80 

a2 a3 a4 a. a6 a7 a8 a9 a1o al1 a12 a13 a14 

2 5 8 11 14 17 20 23 24 25 51 53 55 
3 4 5 8 14 20 26 32 35 36 37 39 40 
3 4 9 10 15 16 21 22 24 25 51 53 55 

Table 4 gives the extremal 2-ranges for symmetric bases with 15 < k < 30. The 
set of differences di = ai - ai- is also symmetric, and is only listed up to the 
middle of the set. 

TABLE 4 
The extremal symmetric bases, h = 2, 15 < k < 30 

k n2(Ak) d, = ai-ai-, i=1, 2, . . .k j ] 

15 92 1 2 1 1 3 6 6 6 
16 104 1 2 1 1 3 6 6 6 
17 116 1 2 1 1 3 6 6 6 6 
18 128 1 2 1 1 3 6 6 6 6 
19 140 1 2 1 1 3 6 6 6 6 6 
20 152 1 2 1 1 3 6 6 6 6 6 
21 164 1 2 1 1 3 6 6 6 6 6 6 

164 1 2 1 2 4 3 2 6 8 8 8 
22 180 1 2 1 2 4 3 2 6 8 8 8 
23 196 1 2 1 2 4 3 2 6 8 8 8 8 
24 212 1 2 1 2 4 3 2 6 8 8 8 8 
25 228 1 2 1 2 4 3 2 6 8 8 8 8 8 
26 244 1 2 1 2 4 3 2 6 8 8 8 8 8 

244 1 2 1 1 3 3 4 1 9 9 9 9 9 
27 262 1 2 1 1 3 3 4 1 9 9 9 9 9 9 
28 280 1 2 1 1 3 3 4 1 9 9 9 9 9 9 
29 298 1 2 1 1 3 3 4 1 9 9 9 9 9 9 9 
30 316 1 2 1 3 1 1 7 1 4 3 11 11 11 11 11 

316 1 2 1 2 2 4 5 2 6 4 10 10 10 10 10 
316 1 2 1 1 3 3 4 1 9 9 9 9 9 9 9 
316 1 1 3 1 2 5 1 3 2 10 10 10 10 10 10 

*n2(15) = 92 and n2(16) = 104 with the extremal bases given in Table 4. 
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Appendix, by Torleiv Kltve and Svein Mossige. Rohrback [8] proved that 

1 2 n2(k) > 4k + O(k) 

and conjectured that this is best possible. However, Hammerer and Hofmeister [1] 
proved that 

n2(k) > 18k2 + O(k). 

We shall prove that 

n2(k) > 7 k2 O(k). 

The same result has been proved independently by Mrose [5] by a different and 
more complicated construction. 

We use the following notation: Let a, b, and c be positive integers such that 
b > a and c divides b - a, and let d be a nonnegative integer. Then 

[a(c)b] = {a + ic 0 ? < i < (b -a)/c 

[a, b] = [a(l)b], 

B(a, d) = [a(d)a + d2]. 

LEMMA. Let x, y, and z be positive integers where y > x > 2, and let 

SI =[O,x - 1], 

S2 =[x - 1(x)yx - 1] U {O}, 

S3 =[yx - 1,yx + x - 2] U {O}, 

and T = S1 U S2 U S3. Then 
(I) T + T = [0, 2yx + 2x - 4], 
(II) T + B(z, x- 1) = [z, z + yx + X2 _ X-1]. 

Proof. The proof of (I) is divided into five parts: 

[O, 2x-2] SI + S1 
[2x-1,yx + x-2] c S1 + S2, 

[yx,yx + 2x-3] c S1 + S3, 

[yx + x-2,2yx + x-3] c S2 + S3, 

[2yx,2yx +2x-4] c S3+ S3, 

the verification of which is straightforward. To prove (II), we first note that 

[z, z + x(x - 1)] C S1 + B(z, x - 1). 

Next, if u E[z + x2-x,z +yx-1], then u = z + Ix-m, where m <x 
and x < I < y. Hence, 

u = ((- m + I)x -1) + (z + (m - l)(x - 1)) E S2 + B(z, x - 1), 
and so 

[z + x2 X, z + yx - 1] C S2 + B(z, x-1). 
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Further, 

[z + yx, z + yx + - x - 1] c S3 + B(z, x - 1). 

If w E T + B(z,x - 1), then 

z = O+ z < w yx + x-2 + z + (x- 1)2 = Z +yx +x2 -X - 

and (II) follows. 

THEOREM. Let k > 8 be an integer, and put x = [k/7 1, y = k - 4x + 3. Further, 
let T have the same meaning as in the lemma, and let u = n2(T) + 1, v = 

n2(T U B(u, x - 1)) + 1 and 

A = (T\{O}) U B(u, x - 1) U B(v, x - 1). 
Then, JAI = k and 

4x2 + 2 2 +12 n2(A) = 4kx- 14 12x-4 = 7 k 7 k + 0(1). 

Proof. By the lemma, 

u = 2yx + 2x - 3, 

v = u + yx + x2-X = 3yx + X2 + x-3. 

Hence, 

T + A =[I,v +yx + X2-X-1 = [1, 4yx + 2x2 -4]. 

Let w = 4yx + 2x 2- 3. Suppose w = a + b where a, b E A, a < b. Then w < 

2b, and so b > 2yx + X2 - 2. Hence, b E B(v, x - 1). Similarly, w > 2a, and so 
a < 2yx + X2-1. Hence, a V B(v, x - 1). Since w V T + A, a E B(u, x-1). 
Let 

a = (2yx + 2x-3) + I(x-1), 0 < < x- 1, 

b = (3yx + x2 + x-3) + m(x-1), 0 < m <x-. 

Then, 

w = 4yx + 2X2 - 3 = a + b =5yx + X2 + 3x - 6 + (1 + m)(x - 1). 

Hence, (1 + m + 3)(x - 1) + x(y -x) = 0. However, since k > 8, x - 1 > 0 
and y - x > 0, and so we have a contradiction. Therefore, 

n2(A) = 4yx + 2X2 - 4 = 4kx - 14X2 + 12x - 4. 

If we put x = k/7 + 9(k), then 0 < 0(k) < 1, and 0(k) depends only on k 
modulo 7. Further, 

n2(A) = 7 k2 +7 k + (129 - 1492 - 4). 

Remark. One extremal basis for k = 14 is of the form T U B(u, x - 1) with 
x = 3 and y = 8. For general k, one optimal choice for x and y in this case is 
x = [3k/161 andy = k - 3x + 3, which gives 

n2(T u B(u, x - 1)) = 32 k 0(k). 
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This is asymptotically weaker than the construction above. A more general con- 
struction would be 

A = (T\{O}) U U B(ui, x-1), 
i=1 

where us = n2(T) + 1 + (i - l)(yx + x2 - x). The construction above corre- 
sponds to t = 2, which turns out to give the asymptotically best result. 
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